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I. INTRODUCTION

Work reported in /1/ has shown that the principle of minimum cross-entropy
(minimum directed divergence) provides a correct, general method of inductive
inference in terms of continuous probability densities when given a prior
density and information about the '"true" density in the form of expected
values. In this paper, I show how cross-entropy minimization can be used to
estimate power spectra when given a prior estimate of the spectrum and new
information in the form of autocorrelation function samples. This new
approach reduces to maximum entropy spectral analysis /2/ in certain special
cases, and can be thought of as providing a fundamental derivation of the
maximum entropy technique.

A. Maximum Entropy Spectral Analysis_(MESA)

Because the power spectrum S(f) of a band-limited, stationary process is
related to its autocorrelation function R(t) by a Fourier trar orm, and
because it is relatively easy to measure the autocorrelation function, many
spectral analysis techniques start with samples of the autocorrelation
function. The classical approach uses spectral window functions /3/. 1In this
approach one takes the Fourier transform of the product R(t)W(t), where R(t)
is the measured autocorrelation function in the range [ T, and where W(t)
is a known window function with W(t) = 0 for |t] > T. One then estimates the
unknown power spectrum S(f) by exploiting the convolution theorem, which
states that the Fourier transform of the product of two time domain functions
is equal to the convolution in the frequency domain of their Fourier

transforms. Although mathematically elegant, the classical procedure can be
Note: Manuscript submitted November 29, 1978.
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seen to distort the known values of R(t), |t| < T, and to assume that R(t) = 0
in the unknown region |t| D> T, despite the fact that R(t) cannot in general be
zero everywhere in this region. An alternative approach is to extend R(t) so
as to take on reasonable values in the unknown region |t|> T and to estimate
S(f) by taking the Fourier transform of the resulting extended function. As a
general approach this seems more reasonable than the classical approach, but
it leaves open the question of how to extend the measured portion of R(t).

In proposing the technique called Maximum Entropy Spectral Analysis
(MESA), Burg /2/ suggested that R(t) be extended in a manner that maximizes
the entropy of the underlying stationary process. Specifically, Burg proposed

that the power spectrum S(f) be estimated by maximizing

W
df log(s(f)) (1)
(o]
subject to the known constraints
W
R(tk) = df s(f) exp(2¢itkf), (2)
-W

where W is the bandwidth, and where R(tk), k=1,2,...,m, are known samples of
the autocorrelation function.

Maximum entropy spectral analysis can be seen /4/ as an application of
Jaynes's maximum entropy principle /5/, which applie: to situations in which
one wishes to estimate or guess at an unknown probabilities q*(xi) when

given a set of expected values Ek
g - 2 xpe (x) (3)

k=1,2,...,m. The maximum entropy principle states that, of all the

distributions that satisfy the constraints (3), one should choose the one with

-




the largest entropy
H(q) = - EE; q(xi)log(q(xi)) . %)

Intuitively, the maximum entropy principle follows from the the fact that, to
within the choice of logarithmic base, entropy (4) is a unique measure of the
uncertainty represented by the distribution q(xi) /6/,/7/. Jaynes argues
that the maximum entropy distribution is '"the only unbiased assignment we can
make; to use any other would amount to arbitrary assumption of information
which by hypothesis we do not have" /5, p. 623/. Similarly, the maximum
entropy distribution "agrees with what is known, but expresses 'maximum
uncertainty' with respect to all other matters" /8, p.231/.

The maximum entropy principle is applied somewhat indirectly in MESA. The
expression (1) is the entropy gain in a stochastic process that is passed
through a linear filter with characteristic function Y(f), where
s(e) = |¥(6)|? (see /6, pp. 93-95/, /14, pp.412-414/, /26, p. 263/). If the
input process is white noise, then the output process has spectral power
density S(f). This suggests that the process entropy can be maximized by
maximizing the entropy gain of the filter that produces the process. Thus,
(1) is maximized subject to the constraints (2).

B. Limited Acceptance of MESA Viewpoint

Burg's proposal /2/ led to a variety of practical and useful spectral
estimation algorithms /9/-/18/, but it seems fair to say that, despite its
strong intuitive appeal, MESA has not had widespread acceptance. The reasons
for this appear to go beyond the natural inertia that results from familiarity
with the long-standing, classical approach, particularly since MESA is known

to be equivalent to minimum least-squares estimation /10/,/19/.




I believe that much of the resistance to the MESA viewpoint stems from
doubt ahbout the validity of the maximum entropy principle, which has remained
controversial /20/-/25/ despite numerous successful applications (see /1/).

To some, entropy's properties as an information measure make it obvious that
entropy maximization is the correct way to account for constraint

information. To others, such an informal and intuitive justification yields
plausibility for the maximum entropy principle, but not proof --- why maximize
entropy, why not some other function? Moreover, even if one accepts the
maximum entropy principle, there are well-known problems /7/ with extending it
from (3)-(4) to the continuous case. Such an extension is required, since
derivations of (1) deal with continuous probability densities (/6, pp. 93-95/,
/14, pp. 412-14/, /26, p. 243/). Some of the resistance to MESA may also stem
from the fact that the maximum entropy principle is applied indirectly in
terms of filtering rather than directly in terms of underlying probability
densities.

All of these hesitations can be addressed in light of the results for
cross-entropy minimization that were obtained in /1/.

C. Outline

Section II summarizes the principle of minimum cross-entropy and discusses
informally the sense in which this principle provides a correct, general
method of inductive inference /1/. 1In Section ITII, I describe stochastic
signals in terms of frequency domain probability densities, I derive the
minimum cross-entropy density given known expected spectral powers, and I
discuss two different possible densities for white noise -- one uniform
probability density and one non-uniform density. In Section IV, I derive the

cross-entropy between the input and output of a linear filter and show that
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the resulting expression reduces to (1) when the input is one of the white
noise densities introduced in Section III but not when the input is the other
one. Section V contains derivations of minimum cross-entropy densities and
corresponding power spectrum estimates when given information in the form of
autocorrelation samples for cases both with and without previous estimates of
the power spectrum. The derivations are carried out twice --- once directly
in terms of the underlying probability densities, and once indirectly in terms
of linear filters. The results are compared with those of MESA in Section

VI. Some remarks about possible algorithms (Section VII) are then followed by

brief conclusions (Section VIII).

II. CROSS ENTROPY MINIMIZATION

A. A General Inference Problem Involving Probability Demsities

Let x denote a single state of some system that has a set D of possible
system states and a probability density qtgg) of states. Let R be the set of

all probability densities q on D such that q(x)) O for x€D and

dg q(3) = 1 . (5)
[}

We assume that the existence ofth.Q,is known but that qf itself is unknown.
The density q* is sometimes known as a '"true" density.

t

Suppose pED. is a prior density that is our current estimate of q , and
suppose we gain new information about q* in the form of a set of expected

values

sz q*(g)gr(g) = <§;> = Er ¥ (6)

D




for a known set of bounded functions 8r(5) and numbers Er’ e

Now, because the constraints (6) do not determine q completely, they are
satisfied not only by dr but by some subset of densities J C R. which single
density should we choose from this subset to be our new estimate of q*, and
how should we use the prior p and the new information (6) in making this

choice?

B. The Principle of Minimum Cross-Entropy

The solution to this inference problem is obtained by minimizing a

functional H(q,p) called cross-entropy,

H(q,p) = .Sdz q(x)log(q(x)/p(x)) . (7)
D

~

Specifically, of all the densities q'€ 9 that satisfy the constraints (6), we

choose the one with the smallest cross-entropy H(q',p) with respect to the

prior p. Stated differently, the posterior density q satisfies

H(q,p) = min H(q',p) ,
q'ed

where 45; B comprises all of the densities that satisfy the constraints (6).
Mathematically, the solution is obtained using the method of Lagrangian
multipliers and standard techniques from the calculus of variations. The

minimization condition is

log(q(x’/p(x)) + 1 + A, + 2 Beg (x) = 0, (9)

where the @r are Lagrangian multipliers corresponding to the constraints

(6), and where 30 is a Lagrangian multiplier corresponding to the

normalization constraint (5). The solution of (9) is




( = - - g
q(x) p(x)exp(- A Zr @rgr x)), (10)
where A = A,+ 1. It is convenient to write (10) in the form
5 -1
a0 = 2 p(exp(- 2 Bes () (11)
where Z is the ‘'partition function",

Z = exp(A) = Sdg p(x)exp(- Z; [Srgr(_g_()) o (12)
D

The values of the multipliers (Sr are determined by the known expectation
values Er in (6). One can express the posterior q directly in terms of the
values 'g'r by solving the equations

-1 92
- gl 82
r >6r

= - 2—log(Z) (13)

"
for the @r’ or by substituting (11) into the constraint equations (6) and
solving for the Fr' Such solutions are often difficult or impossible to
obtain analytically, but one can obtain them computationally in general
/1, Appendix B/, /27/.
The principle of minimum cross entropy also applies when, in addition to
1

equality constraints (6), we gain new information about q' in the form of a

bound on an expected value,

sz qT(gg)gQ() = <g) )/ z . (14)
)

Such an inequality constraint is handled as follows: First one solves for the

minimum cross-entropy density given only the equality constraints (6). If the

‘d|




resulting density happens to satisfy (14), then this density is the overall
solution. If (14) is not satisfied, then the overall sclution is the minimum
cross-entropy density given (6) and the additional equality constraint <g> =g.

C. Background and Justification of Cross-Entropy Minimization

Cross—-entropy goes by other names, including expected weight of evidence
/28, p. 72/, directed divergence /29, p. 6/, and relative entropy /20/. The
term cross-entropy is due to Good /30/. The principle of minimum
cross-entropy was first proposed by Kullback /29, p.37/, who called it a
principle of minimum directed divergence or minimum discrimination
information. It has been advocated in various forms by others /30/, /31,,
/32/, including Jaynes /8/, /33/, who showed that generalizing entropy
maximization to continuous densities leads to (7) with p(x) being called an
"invariant measure'" instead of a prior density. Since entropy maximization
does not deal with prior densities --- there being an implicit assumption of
uniform priors --- this just expresses the fact that a uniform prior in one
coordinate system may not be uniform in another. Cross-entropy minimization
has been applied primarily to statistics /29/, /30/, /34/, but also to
statistical mechanics /35/, chemistry /36/, pattern recognition /37/, /38/,
and the computer storage of probability distributions /39/.

Like entropy, cross-entropy can be characterized axiomatically /32/. Its
properties are desirable for an information measure /31/, /32/, and it can be
argued /40/ that cross-entropy measures the amount of information necessary to
change a prior p into the posterior q. The principle of cross-entropy
minimization then follows intuitively, much like entropy maximization. In /1/
we argued that such justifications are weak, not only because they rely on

informal, intuitive arguments, but also because they are indirect --- they are

he




based on a formal description of what is required of an information measure
rather than on a formal description of what is required of a method for taking
new information into account.

Our approach in /1/ was to formalize the requirements of inductive
inference directly in terms of a set of consistency axioms that make no
reference to information measures or properties of information measures. All
of the axioms are based on a single fundamental principle: If a problem can be
solved in more than one way, the results should be consistent. Informally,
the axioms may be phrased as follows:

1) Uniqueness. The results of taking new information into account should

be unique.

2) Invariance. It shouldn't matter in which coordinate system we account

for new information.

3) System independence. It shouldn't matter whether we account for

independent information about independent systems separately in terms
of different probability densities or together in terms of a joint
density.

4) Subset Independence. It shouldn't matter whether we account for

information about an independent subset of system states in terms of a

separate conditional density or in terms of the full system density.
We were then able to prove /1/ that the principle of minimum cross-entropy
provides a correct, general method of inductive inference in the following
sense: Given a prior density and new information in the form of constraints
on expected values, there is only one posterior density satisfying these
constraints that can be chosen in a manner that satisfies the axioms; this

unique posterior can be obtained by minimizing cross-entropy.




III. MINIMUM CROSS-ENTROPY PROBABILITY DENSITIES FOR STOCHASTIC SIGNALS

A. Power Spectrum Probability Densities

Consider time-domain signals of the form

n

s(t) = cos(wkt) + bksin(wkt) A (15)

%k
k1
with non-zero Ok that need not be uniformly spaced. These are
discrete-spectrum, band-limited signals without DC components. (The
assumption of no DC term, which is reasonable for many signal processing

applications, is made for mathematical convenience.) The

power at each frequency is given by the variables X
X = a + b2 . (16)

If we consider the x, to be random variables, we may describe a stochastic
signal in terms of a joint probability density q(x), where we write x for

X 9XgyeeesX o Instead of constantly referring to q(x) as the spectral

power probability density of a stochastic signal, we will informally refer to
q(x) as a "signal."

B. Minimum Cross-Entropy Densities Given Expected Spectral Powers

Consider first the problem of choosing q(x) when we know the total

expected power per discrete frequency

P =_1 dx (Z x, )q(x) , (17)
2 - k"k™ 7~
R
where dx = dxldxz...dxn. To apply the principle of minimum

cross~entropy, we need a prior density p(g) to represent our state of

knowledge before we learn even (17). Since in any real situation there will

10




be a physical limit on the magitude of the X, » We assume that the domain of
x is bounded. We may therefore use a uniform prior density. In general,
whether or not it is valid to assume a uniform prior density for continuous
probablity densities is a difficult question /8/. Therefore, although we
assume a uniform prior p(x) in the following, we shall consider the question
more carefully later in this section. :

We choose q(x) by minimizing cross-entropy subject to the constraints (5)

and (16). The result (see (10)) is

q(x) = Aexp(-szxk) %

where ‘3 is the Lagrangian multiplier corresponding to (16), and where the
uniform prior and the Lagrangian multiplier corresponding to (5) have been

absorbed into the constant A,

A—l = dxl gdxzs.. -den exp(-P kak) . (18)

Provided that P is much less than the maximum value of the X,» We may use
integration limits of (0,%) in (18); this leads to A = (Sn. In terms of

the multiplier (3), the total power constraint (17) becomes

P = .E.r.‘ Zk dx, xkexp(-ka)Trdxmexp(—me)

mpk
= 1B
The posterior q({) is therefore
q(x) = WET.(I/P) exp(-xk/P) 3 (19)

k=1

Thus, q(x) is a multivariate exponential --- each spectral power x, is

11
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exponentially distributed with mean P.
Now consider the more general problem in which we learn the expected

spectral power P, at each frequency,

k
P, = (x> = Sag xa(x) . (20)

Again using a uniform prior, the minimum cross-entropy posterior in this

case is

q(x) = ‘1 l(l/Pk) exp(-xk/Pk) (21)
2l

(the derivation is similar to that of (19)). 1In fact, the same posterior (21)
results if (19) is used as a prior instead of a uniform prior.

We now return to the question of the uniform prior. One might wonder how
differently (21) might have turned out had we described the signal originally
as a probability density in the variables a, b, (see (15)) and used a
prior that was uniform in a, bk rather than uniform in the variables X,

(see (16)). 1In this case the constraints (20) take on the form
Loy G
B <ak + bk> Sd_gd}? (s + b )q(a,b) . (22)
With a uniform prior p(a,b), the result of cross-entropy minimization is
ala,b) = A exp(- (2 + b2))
22 P k(sk k Tk
Solving for A, using (5), and for the multipliers (Bk’ using (22), yields
"
q(a,b) = II (1/¢P,) exp(-(a2 + bz)/P ) (23)
“a k k k k

k=

Thus the variables a, and bk have Gaussian distributions with zero means

and variances Pk/2. Since the variances correspond to power expectations

12




2

3

or g: , this just shows that the expected power Pk is
divided evenly between the two quadrature components.
Our next step is to transform (23) to a density in terms of of the

variables X and to compare the result with (21). We begin by transforming

from (ak,bk) coordinates to (rk, Ok) coordinates, where
2 2 2
k
8 = tan-l(b la,) .
k' 'k

The volume elements in the two coordinate systems are related by
da,db, = r,dr,df, . Since q(a,b)dadb = q(r, 2 )drd® , it follows
that

n
a5, 8) = [l /mpexpl-r2/p)
and e
a(r) = ];[urk/pk)exp(-r‘f/pk) (24)

hold, where in (24) we have integrated over the @, coordinates. Now T

k
and x, are related by X = ri, so that dxk = 2rkdrk. Since
q(x)dx = q(r)dr, it follows from (24) that q(x) is given by
n
a@ = [[ar exptx/p) .

k=

which is the same as (21). Thus, when given information in the form of
expected spectral powers, it doesn't matter whether the prior density is
assumed to be uniform in the amplitude variables a, bk or in the power
variables X, - The result is a multivariate exponential in the variables
x, or a multivariate Gaussian in the variables a, bk'

One other alternative that needs consideration is to work in the Qg,g )

13




coordinates and to use a prior p(r, ) that is uniform with respect to the
volume element dvd . Integrating over and transforming to the X,
coordinates leads to a non-uniform prior
n
p(x) = _L.TT(xk)—l/z,

2 ke
This constrasts with the choice of a uniform prior p(g,?), which corresponds
to a uniform prior p(x). Since there is no reason to have a non-uniform prior
p(x), we reject the possibility of a uniform prior pQg,g ).

C. Spectral Probability Densities for White Noise

By "white'", we mean that the expected spectral powers (xﬂ) are all
equal. What probability density should we use to represent white noise?
There are two obvious possibilities. The first is the uniform prior p(x)
itself, for which x, = xmax/z’ where X ax is the maximum value of the

x This is appealing because it doesn't require any additional information

x
beyond the prior. Sometimes, however, we may know the total power per
"discrete frequency of the white noise signal, in which case (19) would seem to
be the appropriate probability density. We shall refer to the first of these
two possibilities as "uniform white noise" and to the second as "Gaussian
white noise."

Under some circumstances one might be willing to argue that, although we

don't know the total power per discrete frequency of the noise signal, we do

know an upper limit. Stated differently, not only do we know the limit X nax

but

we know a limit for the quantity

P(q) = - Zk<xk~) -4 dx (kak)q(g) '
n n

14




namely

P(q) £ P . (25)

max

As mentioned in Section II, the procedure in this case is to see if (25) is
satisfied without imposing a specific constraint, and, if not, to impose the
equality constraint P = Pmax' The inequality constraint (25) will be

satisfied by the uniform prior p(x) if

(=720 £ B__. (26) “

max max

1f (26) does not hold, it follows from (19) that the appropriate density is

" 1
-
q(f) = h’&‘ (I/Pmax) exp(-xk/me) . (27) |
1f x reflects knowledge about some kind of physical limit while P
max max

reflects knowledge about power limitations of the signal source, then it seems
likely that 26) won't be satisfied, which means that the Gaussian white noise

deasity (27) should be used. : '

15




IV. CROSS-ENTROPY BETWEEN INPUT AND OUTPUT OF LINEAR FILTE. '

Suppose a signal with probability density p(x) is passed through a linear
filter with characteristic function Y(#). Then the magnitude x, of each

power spectrum component is changed by the factor

S, = IY(vk)l2 E
where 9, = Qk/2n'. If q(x) is the probability density of the signal
that results from passing p(x) through the filter, then the input p(x) and the
output q(x) are related by

p(x]/SI, Xy/Sgy weey xn/Sn)

q(x) =
8152...Sn .

The filter has the effect of a linear coordinate transformation. The

cross-entropy between the input and the output is

e

H(q,p) = gdz q(g)log(q(g)/p(}f)

PAypscenny )
P(ylsl""’ynsn)

gdz p(yl,...,yn)log(

(28)
i E.k log(sk) . i

where y, = xk/Sk.

Eq. (28) is a general result for any input signal p(x). Now we evaluate
(28) for the special case in which p(x) is uniform and for the special case in
which p(x) is exponential. When the filter input p(x) is uniform, the first

term in (28) is zero, and the cross-entropy between input and output is

16
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H(q,p) = - 2

Notice that, except for sign, this is the discrete form cof the expression (1).

" log(Sk) - (29)

When the filter input has the exponential form (21), which in terms of the

spectral amplitudes a bk is Gaussian, the cross-entropy (28) becomes
H(q,p) = —gdz p(z)zk (yk - yksk)/Pk

-2, log(s,),

or

H(q,p) -Z‘—k 2= 8 log(Sk)) y (30)

since de ykp(y) = Pk' Notice that this result is independent of the

particular Pk values.

V. MINIMUM CROSS-ENTROPY POWER SPECTRA GIVEN AUTOCORRELATION INFORMATION

Let some unknown signal q+(§) have a power spectrum G(f) and
autocorrelation function R(t). Suppose we obtain information about G in the

form of a set of samples of the autocorrelation function R(tr),
w

U R(tr) = \df G(f)exp(Zwitrf) ’ (31)

=W
r=1,...,m. We do not assume that the t, are equally spaced. If the

frequency spectrum is discrete, as we have assumed in (15), we can express

G(f) as
i
G(f) = (¢t =~2),
lt:-nckg k)

where f = -f G, =G, =G(f), and Gy = 0. Then (31) becomes

-k’ Tk

————




n
Rr = éck exp(Zntrfk),

which we prefer to express in the non-complex form

n
R = :Z:G c
r et k

K (32)
where
Gy S 2cos(21’ftrfk). (33)
Since the G, satisfy
G, = (xk> = jd;_: xkqf(_g_t) p (34)
we can rewrite (32) as
R - jdz (2, me e @ (35)

This has the form of known.expected values of the unknown density q+(3), and
we may therefore use the principle of minimum cross-entropy to infer an
estimate of qf. In terms of the general form (6), the functions g, are

gr‘= kakcrk' This minimum cross-entropy problem differs from the

one discussed in Section III in that the Section III problem assumed knowledge
of the expected spectral powers in the form (34), whereas in this problem we
have only the form (35). Since typically m<n, knowledge of (35) provides
less information than does (34).

A. Results When No Prior Power Spectrum Estimate is Given

-’.

If we have no prior information about q', then we use a uniform prior p(x)

as discussed in Section IITI. We then select a posterior q(‘)‘z_) by minimizing

cross-entropy subject to the autocorrelation constraints (35) and

18
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the normalization constraint (5). The result is

m n
q(x) = A exp(— ;‘Z Fr Zxkcrk) 9 (36)
A k=

where the r’r are m Lagrangian multipliers corresponding to the

autocorrelation constraints (35). For convenience, we define

"

e " £ (Jrcrk, (37)
“|
so that (36) can be written as
n
q(x) = A exp(- Zukxk) ‘ (38)
L &
Solving for A in the usual way yields
q(x) = Uukexp(-ukxk) é (39)

For our posterior estimate Qk of the power spectrum, we use the density (39)
to compute Q '<xk> = (l/uk), or

1

Z Prcrk ; : (40)

G -

where the multipliers Pl’ are determined by the constraints (32),
}n v

k-

The minimum cross-entropy power spectrum estimate (40) is identical to the

E: PJ 1;\ & (41)

|
result for MESA, except that the MESA equations are usually expressed in

complex form (/10, p. 9/, for example). In fact, one can derive (40) using a

filtering argument of the kind usually used in deriving the MESA result. If a

19




white signal p(g) is passed through a linear filter with characteristic
function Y, the power spectrum of the output signal is given by
o - lY(fk)‘z. If the output signal is to be an estimate of qf, then we
know that the Qk must satisfy (32),
n

h = E?; Qg - (42)
Tﬁis suggests that we design a filter with minimum cross-entropy between input
output, provided that the output power spectrum satisfies (42). Since one
interpretation of cross-entropy /40/ is as a measure of the information
necessary to transform the prior into the posterior, one can think of this
filter as the one that produces the smallest information change from the prior
while still accounting for all known information. For a unifsrm white
prior p(x), the cross-entropy between the input and output of the filter is

given by (29),

Hiq,p) = -2 log(Q) (43)

Hence, we minimize (43) subject to the constraints (42). The minimization
condition is
)
_(1/Qk) + Z(srctk S

=)
and its solution for Q is the same as (40). Furthermore, minimizing (43)
subject to (42) is just the discrete version of maximizing (1) subject to (2),
which also shows the equivalence between MESA and minimum cross-entropy
estimation for uniform priors. This equivalence is not surprising, since
cross-entropy minimization is equivalent to entropy maximization in general

for the case of uniform priors /1/.

<




B. Results When A Prior Power Spectrum Estimate is Given

Now we consider the case in which we obtain the autocorrelation

information (35) when we already have an estimate P, of the power spectrum

k

Gk (34). 1In this case the prior density is not necessarily uniform, as it

must reflect the information in the prior estimate of the power spectrum. The

appropriate prior density is the exponential form (21),

n

p(X) = | L (1/R) exp(-x,/B,) . (44)
hesi

which itself is the minimum cross-entropy density, with respect to a uniform
prior, given knowledge of the expected spectral powers Pk. If the prior

estimate Pk is the estimate Qk that was obtzined by the method discussed

in the previous subsection, then the appropriate prior density for obtaining a
new estimate given new autocorrelation information is the posterior (39).

Since u = l/Qk, (39) is equivalent to (44).

We therefore solve the problem of estimating Gk’ given a prior estimate

P, and new autocorrelation information (35), by assuming the prior density

k
(44) and minimizing cross-entropy subject to the constraints (35) and

(5). The result is

q(x) = p(x) exp(- A - Ekukxk)
= _k‘”r . exp(~( + -l-)x ) (45)
x i e il Pk x
k

where the u, are defined as in (37). Since 7A's value must be such that

q(x) satisfies the normalization constraint (5), (45) becomes

1
+ —)x ) - ([06)
k EL k

gix) = (u, + %70 exp(-(u
k

For our posterior estimate Q, of the power spectrum, we use the density (46)
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to compute Qk = <x£> = 1/(uk + P;l), or

g = 1
. (1/B) + 2 Brc e - (47)
where as usual the multipliers [Zr are determined by the requirement that
the Q, satisfy the autocorrelation constraints (42).

We can also derive the result (47) by a filtering argument that is similar
to the one given in the previous subsection for the case when no previous

estimate was available. Suppose a signal with power spectrum P, is passed

k

through a linear filter with characteristic function Y(f). The output power
) ¥ ’ 2

spectrum will be Q = P, S, , where S ‘Y(fk)l . If the output

power spectrum is to be our new estimate, we know that the Qk must satisfy

(42). 1If the P, is our previous estimate, this suggests that we design a

k
filter with minimum cross-entropy between input and output, given that the
input density satisfies (xﬁ) = Pk and that the output power spectrum Qk
satisfies (42). For input densities of the exponential form (44), the
cross-entropy between input and output is given by (30). Hence, we choose the
§, so as to minimize (30) subject to the constraints (42), which we rewrite

as
n
B ° ZI’kskcrk ’
k=1

The minimization condition is

1 - (1/sk) + Z”.L'{;r Plr * o

r=)

Solving this for Sk and computing Qk = Pksk yields our previous result

(47).

0
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VI. COMPARISON OF RESULTS

Given information in the form of autocorrelation samples (35), the minimum
cross-entropy signal probability density has the form

o) = 1‘{1(1/%) exp(-x, /Q,)

where the Q are the posterior estimates of the signal power spectrum. In
k P P P

the case of a uniform white prior, the Qk are given by (40),

() 2 1
o IRC e P ’
(1)
Z‘Pr L (48)

In the case of a Gaussian white prior, the Q are given by (47) with
k

Pk = P for all k,

Q1(<2) i 1 !

(2)
(1/P) + Zr ‘5r g (49)

As discussed in Section III, P is the known value or maximum value of the
expected power per unit frequency. In the case of a Gaussian non-white prior,

the Q, are given by (47),

(3) 1
Qk 4 (3) y
AR+ & B e (50)
where the Pk are prior estimates of the power spectrum. 1In all three cases
(48)-(50), the m Lagrangian multipliers @r are determined by the
requirement that the Qél) satisfy the autocorrelation constraints
<&~
PR R L2
R, LN S 2 (51)
k=i
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for r = 1,...,m and i = 1,2,3,

We begin by comparing the results (48) for a uniform white prior with
those (49) for a Gaussian white prior. Suppose that one of the
autocorrelation samples, say Rl, is for zero lag (t1 = 0). Then (33)

shows that ) = 2 holds for all k. It follows that (49) can be written as

k
C2) 1
bl
¢ (Srcrk 3
where F = 53(1) for r = 2,...,m, and - D + (1/2p).
r e 1 1
. . gty £2)
Comparing with (48), we conclude that Qk = Qk for all k. Thus,

a uniform white prior and a Gaussian white prior yield the same posterior
power spectrum estimates when one of the autocorrelation samples is for zero
lag. This is reasonable since the zero-lag sample is just the total expected
power per diécrete frequency, and since the Gaussian white prior is the result
of minimizing cross-entropy with respect to the uniform white prior given
knowledge of the total expected power per unit frequency (See Section III).

On the other hand, the two results (48)-(49) are not equivalent in general
if there is no zero-lag autocorrelation sample. To see this, Suppose there is

only one autocorrelation sample, R1 = ZSLchlk’ with tl # 0. If
(1) (2)

Qk = Qk were to hold for all k = 1,...,n, then

il)clk = P—1 + §2)clk : (51)

would have to hold for all k. But pgl) and PgZ) are constants,

whergas the c,, vary with k since t # 0 (see (33)). It follows that (51)

1k
and, therefore, Qil) = Q£2) cannot hold for all k.

Now we compare the results (49) for a Gaussian white prior with the
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results (50) for a Gaussian non-white prior. We consider the case of a single

autocorrelation sample Rl = jiquclk that may or may not be a

zero-lag sample. If Q£2) = Q£3) were to hold for all k = 1,...,n,
then
-1 (2) | (3)
F e il ity (52)

would have to hold for all k. Since 52) and ﬁ§3) are constants,

and since P.! varies with k independently of c (52) cannot hold for

k 1k’

all k whether or not < is a constant (zero-lag sample).

k
The results of the foregoing comparisons may be summarized as follows:

1) The results for a uniform white prior and a Gaussian white prior will be
the same whenever one of the known autocorrelation samples is for zero
lag. Since (48) is juét the MESA result, another way of saying this is
that minimum cross-entropy spectral analysis and MESA are equivalent if
there is no prior estimate (other than uniform) of the power spectrum and
if one of the autocorrelation samples is for zero lag.

2) 1f there is no zero-lag autocorrelation sample, the results for a uniform
white prior and a Gaussfan white prior will not in general be the same.

3) The results for a Gaussian non-white prior differ in general from those

of a Gaussian white prior and those of a uniform white prior, whether or

not one of the autocorrelation samples is for zero lag.

25
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VII. TOWARDS EFFICIENT ALGORITHMS

Minimum cross-entropy spectral estimates based on autocorrelation samples
are given by (48)-(50), the particular form depending on what is known about
the signal prior to obtaining the autocorrelation samples. In all three
cases, one must solve for the Lagrangian multipliers F& in order to obtain
actual power spectrum values Qk' This can be done by substituting whichever
of (48)-(50) is applicable into (51) and solving the m resulting equations for
the ﬁr. Unfortunately, this approach is unlikely to be suitable for
real-time signal processing although it has the advantage of considerable
generality. 1In particular, the results (48)-(50) and (51) make no assumptions
about the number and spacing of either frequencies of autocorrelation
samples.

In many real-time signal processing applications, it is reasonable to
assume that the the frequencies fk are equally spaced fk = kAf, and that
the autocorrelation samples R(tr) are equally spaced at the Nyquist rate,

e 1/(2nAf). 1In this case, the coefficients rk become

¢, = 2cos(frrk/n) . (53)

rk

This form has a variety of properties that can lead to algorithmic
simplifications, the fast fourier transform being the best known example. In
the MESA case (48), the simplified form (53) leads to efficient algorithms

that are equivalent to autoregressive and linear prediction methods /10/, /19/.
It seems reasonable to expect that similar efficient techniques can also be
derived from (49) and (50).

Even in cases where there the form (53) does not apply, there is one
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situation in which cross-entropy spectral analysis given a prior spectral
estimate and new autocorrelation samples may be particularly efficient.
Suppose that the prior spectral estimates Pk are completely consistent with
the new autocorrelation samples, i.e., that Rr = Kk Pkcrk holds
(compare with (42) or (51)). 1In this case the multipliers (3r will all
satisfy @r = 0, and the posterior spectral estimates will not change from
the prior estimates, Qk = Pk' This follows from a general property of
cross-entropy that H(p,p) < H(q,p) for all q # p (e.g., /29, p.l4/), which
means that the minimum cross-entropy posterior will equal the prior whenever
the prior meets all constraints. Now suppose that the prior estimates Pk
were obtained by cross-entropy minimization given a prior set of
autocorrelation samples R;. The foregoing suggests that if the new
samples Rr are close in value to the old samples R; --- i,e., the
spectrum is slowly changing --- then the multipliers PT will be close to
zero. As mentioned above, the multipliers are determined in general by
substituting (47) into (42) and solving the resulting equations. The result
of the substitution is
. "
N Rk _Z‘;J.cjk)‘l : (54)
ke )t

If the (;j are close to zero, we may expand this ignoring terms of O(P§)

and higher, yielding
2
R Zk (P = Pk Z chjk) . (55)

However, the prior spectral estimates Pk and the prior autocorrelation

samples R; are related by R; = Pkcrk' It follows that we

k
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may write (55) in the form
™

JZL Fjdrj il e R; - (56)

where we have defined drj as

n
L
drj oA Pkcrkcjk . (57)
k=i
Thus, in the case of slowly a changing autocorrelation function, (54) reduces
to a set of linear equations (56), whether or not (53) holds. If (53) also
holds, then the computation of (57) should be simpler, thereby making the

solution of (56) even more efficient.

VIII. CONCLUSIONS

Depending on the extent to which a previous gstimaég is available,
cross-entropy minimization provides various alternitives for estimating power
spectra given autocorrelation samples. The results reduce to those of maximum
entropy spectral analysis (MESA) in a manner that, in my opinion, provides a
better derivation of MESA than previous approaches. When a previous power
spectrum estimate Pk is available, cress-entropy minimization leads to a new
estimate Qk that differs from the MESA result. Because it exploits more
information, the minimum cross-entropy estimate should be better than the MESA
estimate. This possibility, and the question of efficient algorithms, will be

explored in further work.
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